Sunday, November 29, 2020

Crime Scene Chemistry – Luminol, Blood & Horseradish

Must read

Four hundred unidentified Pearl Harbor dead to be exhumed and identified, US officials announce

The remains of nearly 400 unidentified American servicemen killed at Pearl Harbor will be exhumed, identified, and given individual burials, the US government has announced. The bodies...

The Wrinkles On Raisins Can Teach Us A Lot About Fingerprints

The humble raisin doesn't usually inspire much thought (beyond pondering the ethics of their occasional chocolate chip impersonation), but scientists at MIT have spent...

Soldiers help identify new IED threats using forensics

As operations in Iraq and Afghanistan have demonstrated, the enemy is adept at making inexpensive improvised explosive devices, or IEDs, and modifying them over...

Scientists Create New Technology That Can ID the Wearer of a Shoe

For all the advancements in forensic technology over the past two decades, some areas continue to lag. Current shoeprint analysis techniques are still relatively...
Michael Whyte
Crime Scene Officer and Fingerprint Expert with over 7 years experience in Crime Scene Investigation and Latent Print Analysis. The opinions or assertions contained on this site are the private views of the author and are not to be construed as those of any professional organisation or policing body.
- Forensic Podcast -

Anyone who’s watched CSI or similar shows knows that, whenever the investigating team are on the scene of a gruesome and bloody murder, luminol solution gets sprayed liberally over absolutely everything. The result is a pale blue luminescence whenever the solution meets blood, which itself is a consequence of a chemical reaction that the blood gives a helping hand to. Here, we look at this reaction – and what horseradish has to do with it.

Luminol, known chemically as 5-Amino-2,3-dihydro-1,4-phthalazinedione, isn’t used in the CSI’s mysterious spray bottle on its own. It’s joined by a number of other chemicals which are just as vital for the reaction to take place. The first of these additions is a strong oxidising agent such as hydrogen peroxide; this chemical is directly involved in the reaction with luminol. What’s also needed is a basic solution, which can be achieved via addition of an alkali such as sodium hydroxide. This is necessary because, in neutral solution, luminol forms what’s known as a zwitterionic structure; that is, a molecule with both a positive and a negative charge. In a basic solution, it forms an anion, a negatively charged molecule which can be oxidised by the oxidising agent.

This isn’t all that’s required, however. The reaction also needs a catalyst in order for it to proceed, and this is where blood comes in. Blood contains haemoglobin, which contains iron atoms. These iron atoms can act as a catalyst for the reaction between luminol and hydrogen peroxide, allowing it to proceed. A cyclic peroxide is produced by the reaction, which quickly decomposes to give a chemical called 3-aminophthalate. The reaction releases energy, which is transferred to electrons in the 3-aminophthalate molecules, promoting them to a higher energy level. As the electrons drop down to a more stable energy level, they release their excess energy as photons of light, resulting in blue chemiluminescence. Luminol can detect the presence of blood at dilutions of up to 1:1,000,000, or 1 part per million.

So, blue glow from luminol always equals blood, right? Wrong! Unfortunately, there are several other substances that are capable of catalysing the oxidation of luminol. It can also be oxidised by the chemicals in bleach, such as sodium chlorate; low levels of blood in urine can also trigger the reaction. Additionally, enzymes can also lend a hand. Peroxidase enzymes found in faeces can set off the chemiluminescence, and, more strangely, horseradish also contains peroxidase enzymes that can cause a false positive. Admittedly, the likelihood of a crime scene having been smeared in horseradish is pretty low, but it illustrates some of the drawbacks of relying on luminol as a clear-cut indicator of the presence of blood.

Luminol also has other disadvantages. The glow is much shorter-lived than sometimes portrayed in TV shows, and lasts only around thirty seconds. The use of luminol solution can also damage other surrounding evidence, such as proteins, enzymes and genetic markers, though it’s been shown that DNA samples can still be obtained from evidence on which luminol has been sprayed. As it’s water-based, it can also cause the dilution and smearing of blood impressions. So, whilst luminol is certainly an incredibly useful tool in the CSI arsenal, it’s probably not sprayed quite as liberally around crime scenes as television might have you believe.

Source: Compound Chemistry

- Advertisement -

More articles

- Advertisement -

Latest article

Trees and shrubs might reveal the location of decomposing bodies

Plants could help investigators find dead bodies. Botanists believe the sudden flush of nutrients into the soil from decomposition may affect nearby foliage. If...

Are Detectives discounting the associative value of fingerprints that fall short of an identification in their investigations?

Every day, Fingerprint Experts in every latent office across the globe examine fingermarks that they determine to fall short of an identification....

Using the NCIC Bayesian Network to improve your AFIS searches

This National Crime Information Centre (NCIC) Bayesian network is based on the statistical data of general patterns of fingerprints on the hands...

DNA decontamination of fingerprint brushes

Using fingerprint brushes across multiple crime scenes yields a high risk of DNA cross-contamination. Thankfully an Australian study has discovered a quick and easy way to safely decontaminate fingerprint brushes to prevent this contamination risk and allows the brushes to be safely reused even after multiple cleaning cycles.

Detection of latent fingerprint hidden beneath adhesive tape by optical coherence tomography

Adhesive tape is a common item which can be encountered in criminal cases involving rape, murder, kidnapping and explosives. It is often the case...